Hereditary Undecidability of Some Theories of Finite Structures
نویسنده
چکیده
Using a result of Gurevich and Lewis on the word problem for finite semigroups, we give short proofs that the following theories are hereditarily undecidable: (1) finite graphs of vertex-degree at most 3; (2) finite nonvoid sets with two distinguished permutations; (3) finitedimensional vector spaces over a finite field with two distinguished endomorphisms.
منابع مشابه
Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests
We prove that the homomorphic quasiorder of finite k-labeled forests has a hereditary undecidable first-order theory for k ≥ 3, in contrast to the known decidability result for k = 2. We establish also hereditary undecidability (again for every k ≥ 3) of first-order theories of two other relevant structures: the homomorphic quasiorder of finite k-labeled trees, and of finite k-labeled trees wit...
متن کاملA Useful Undecidable Theory
We show that many so called discrete weak semilattices considered earlier in a series of author’s publications have hereditary undecidable first-order theories. Since such structures appear naturally in some parts of computability theory, we obtain several new undecidability results. This applies e.g. to the structures of complete numberings, of m-degrees of index sets and of the Wadge degrees ...
متن کاملTheoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers
In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable solids is presented, and governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed using the principle of virtua...
متن کاملUndecidability of the Theories of Classes of Structures
Many classes of structures have natural functions and relations on them: concatentation of linear orders, direct product of groups, disjoint union of equivalence structures, and so on. Here, we study the (un)decidability of the theory of several natural classes of structures with appropriate functions and relations. For some of these classes of structures, the resulting theory is decidable; for...
متن کاملA Uniform Method for Proving Lower Bounds on the Computational Complexity of Logical Theories
A new method for obtaining lower bounds on the computational complexity of logical theories is presented. It extends widely used techniques for proving the undecidability of theories by interpreting models of a theory already known to be undecidable. New inseparability results related to the well known inseparability result of Trakhtenbrot and Vaught are the foundation of the method. Their use ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 59 شماره
صفحات -
تاریخ انتشار 1994